Feed Me: an in-situ Augmented Reality Annotation Tool for Computer Vision
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The power of today's technology has enabled the combination of Computer Vision (CV) and Augmented Reality (AR) to allow users to interface with digital artifacts between indoor and outdoor activities. For example, AR systems can feed images of the local environment to a trained neural network for object detection. However, sometimes these algorithms can misclassify an object. In these cases, users want to correct the model's misclassification by adding labels to unrecognized objects, or re-classifying recognized objects. Depending on the number of corrections, an in-situ annotation may be a tedious activity for the user. This research will focus on how in-situ AR annotation can aid CV classification and what combination of voice and gesture techniques are efficient and usable for this task.