Show simple item record

dc.contributor.authorElgin, Jennifer Mayen_US
dc.date.accessioned2019-07-11T08:01:06Z
dc.date.available2019-07-11T08:01:06Z
dc.date.issued2019-07-10
dc.identifier.othervt_gsexam:19159en_US
dc.identifier.urihttp://hdl.handle.net/10919/91406
dc.description.abstractConsumers associate meat color with quality. In some cases, especially in fresh and cured hams, the surface of a ham, whole, boneless or sectioned and formed displays a color gradient, which is unsightly and generally is considered of lower quality and must be discounted or processed different where color is less critical to the ultimate value of the resulting product. This disparity in color uniformity across fresh and cured products is sometimes known as two-toning and is most often found in the semimembranosus (SM) and associated muscles of fresh hams and is exacerbated with curing. The underlying color of fresh meat may be a function of postmortem metabolism or the underlying characteristics of those muscles involved. Therefore, the objective of this study is to determine the changes in underlying muscle type and postmortem metabolism in those muscles responsible for fresh ham color variation. Semimembranosus (SM) muscles of 15 mixed bred pigs were collected at 30 min and 1440 min postmortem, and muscle color was determined and muscles were collected and snap frozen for various energy metabolism analyses. Differences in color (L*, a* and b*) were noted across the face of the muscle by zone and time (P < 0.0001) but no differences were detected in pH and lactate, glucose, glucose-6-phosphate, and glycogen metabolisms. Glycolytic potential was also measured on a lactate basis and showed no differences across zone (P = 0.0746) but increased over time (P < 0.006). Lactate and pH were plotted and showed a linear relationship linear relationship (R2 = 0.928337) at 30 min (P < 0.0001) and at 1440 min (R2 = 0.161412; P < 0.0015). Muscle type characteristics showed no difference between zones and time. Buffering capacity showed a significant difference at pH 6 (P < 0.0359) and with time across all pH measured (P < 0.0001). These data suggest inherent differences, such as location and function, in the semimembranosus muscle may be more critical in developing fresh color than aberrations in postmortem metabolism.en_US
dc.format.mediumETDen_US
dc.publisherVirginia Techen_US
dc.rightsThis item is protected by copyright and/or related rights. Some uses of this item may be deemed fair and permitted by law even without permission from the rights holder(s), or the rights holder(s) may have licensed the work for use under certain conditions. For other uses you need to obtain permission from the rights holder(s).en_US
dc.subjectpigen_US
dc.subjectporken_US
dc.subjectglycolysisen_US
dc.subjectmyoglobinen_US
dc.titleDetermining the Underlying Factors of Fresh Ham Color Variationen_US
dc.typeThesisen_US
dc.contributor.departmentAnimal and Poultry Sciencesen_US
dc.description.degreeMaster of Scienceen_US
thesis.degree.nameMaster of Scienceen_US
thesis.degree.levelmastersen_US
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen_US
thesis.degree.disciplineAnimal and Poultry Sciencesen_US
dc.contributor.committeechairGerrard, David E.en_US
dc.contributor.committeememberShi, Haoen_US
dc.contributor.committeememberEl-Kadi, Samer Wassimen_US
dc.contributor.committeememberSutton, Douglas Scotten_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record