Efficiency of Logic Minimization Techniques for Cryptographic Hardware Implementation

TR Number

Date

2019-07-15

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

With significant research effort being directed towards designing lightweight cryptographic primitives, logical metrics such as gate count are extensively used in estimating their hardware quality. Specialized logic minimization tools have been built to make use of gate count as the primary optimization cost function. The first part of this thesis aims to investigate the effectiveness of such logical metrics in predicting hardware efficiency of corresponding circuits. Mapping a logical representation onto hardware depends on the standard cell technology used, and is driven by trade-offs between area, performance, and power. This work evaluates aforementioned parameters for circuits optimized for gate count, and compares them with a set of benchmark designs. Extensive analysis is performed over a wide range of frequencies at multiple levels of abstraction and system integration, to understand the different regions in the solution space where such logic minimization techniques are effective. A prototype System-on-Chip (SoC) is designed to benchmark the performance of these circuits on actual hardware. This SoC is built with an aim to include multiple other cryptographic blocks for analysis of their hardware efficiency. The second part of this thesis analyzes the overhead involved in integrating selected authenticated encryption ciphers onto an SoC, and explores different design alternatives for the same. Overall, this thesis is intended to serve as a comprehensive guideline on hardware factors that can be overlooked, but must be considered during logical-to-physical mapping and during the integration of standalone cryptographic blocks onto a complete system.

Description

Keywords

Logic synthesis, Cryptographic hardware, Circuit minimization, Leon-3, System-on-Chip, Authenticated encryption hardware

Citation

Collections