Trajectory Tracking Control of Unmanned Ground Vehicles using an Intermittent Learning Algorithm
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Traffic congestion and safety has become a major issue in the modern world's commute. Congestion has been causing people to travel billions of hours more and to purchase billions of gallons of fuel extra which account to congestion cost of billions of dollars. Autonomous driving vehicles have been one solution to this problem because of their huge impact on efficiency, pollution, and human safety. Also, extensive research has been carried out on control design of vehicular platoons because a further improvement in traffic throughput while not compromising the safety is possible when the vehicles in the platoon are provided with better predictive abilities.
Motion control is a key area of autonomous driving research that handles moving parts of vehicles in a deliberate and controlled manner. A widely worked on problem in motion control concerned with time parameterized reference tracking is trajectory tracking. Having an efficient and effective tracking algorithm embedded in the autonomous driving system is the key for better performance in terms of resources consumed and tracking error. Many tracking control algorithms in literature rely on an accurate model of the vehicle and often, it can be an intimidating task to come up with an accurate model taking into consideration various conditions like friction, heat effects, ageing processes etc. And typically, control algorithms rely on periodic execution of the tasks that update the control actions, but such updates might not be required, which result in unnecessary actions that waste resources. The main focus of this work is to design an intermittent model-free optimal control algorithm in order to enable autonomous vehicles to track trajectories at high-speeds. To obtain a solution which is model-free, a Q-learning setup with an actor-network to approximate the optimal intermittent controller and a critic network to approximate the optimal cost, resulting in the appropriate tuning laws is considered.