Evaluating the Head Injury Risk Associated with Baseball and Softball

TR Number
Date
2018-06-07
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

More than 19 million children participate in youth baseball and softball annually. Although baseball and softball are not commonly depicted as contact sports in the, according to the U.S. CPSC baseball and softball were responsible for 11.6% of all head injuries treated in emergency rooms in 2009; third most behind only cycling and football. Ball impact has been identified as the leading cause of injury in baseball and softball, with the most frequent injury resulting from a ball impacting the head. Reduced injury factor balls, infield softball masks, batter's helmets, and catcher's masks have all been integrated into baseball and softball as a means for preventing serious head injury from ball impact.

The research in this thesis had four objectives: to compare the responses of the Hybrid III and NOCSAE headforms during high velocity projectile impacts, to compare head injury risk across a range of baseball stiffness designed for different age groups, to evaluate the effectiveness of infielder softball masks' ability to attenuate facial fracture risk, and to describe a novel methodology to evaluate the performance of batter's helmets and catcher's masks. Results of these research objectives determined the most suitable ATD headform to evaluate head injury risk for high velocity projectile impacts, provided a framework for determining the optimal age-specific ball stiffness and optimal infield mask design, and disseminated STAR ratings for batter's helmets and catcher's masks to the public. The research presented in this thesis can be used to further improve safety in baseball and softball.

Description
Keywords
head impacts, frequency, linear, rotational, acceleration, biomechanics
Citation
Collections