Metagenomic Data Analysis Using Extremely Randomized Tree Algorithm
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Many antibiotic resistance genes (ARGs) conferring resistance to a broad range of antibiotics have often been detected in aquatic environments such as untreated and treated wastewater, river and surface water. ARG proliferation in the aquatic environment could depend upon various factors such as geospatial variations, the type of aquatic body, and the type of wastewater (untreated or treated) discharged into these aquatic environments. Likewise, the strong interconnectivity of aquatic systems may accelerate the spread of ARGs through them. Hence a comparative and a holistic study of different aquatic environments is required to appropriately comprehend the problem of antibiotic resistance. Many studies approach this issue using molecular techniques such as metagenomic sequencing and metagenomic data analysis. Such analyses compare the broad spectrum of ARGs in water and wastewater samples, but these studies use comparisons which are limited to similarity/dissimilarity analyses. However, in such analyses, the discriminatory ARGs (associated ARGs driving such similarity/ dissimilarity measures) may not be identified. Consequentially, the reason which drives the dissimilarities among the samples would not be identified and the reason for antibiotic resistance proliferation may not be clearly understood. In this study, an effective methodology, using Extremely Randomized Trees (ET) Algorithm, was formulated and demonstrated to capture such ARG variations and identify discriminatory ARGs among environmentally derived metagenomes. In this study, data were grouped by: geographic location (to understand the spread of ARGs globally), untreated vs. treated wastewater (to see the effectiveness of WWTPs in removing ARGs), and different aquatic habitats (to understand the impact and spread within aquatic habitats). It was observed that there were certain ARGs which were specific to wastewater samples from certain locations suggesting that site-specific factors can have a certain effect in shaping ARG profiles. Comparing untreated and treated wastewater samples from different WWTPs revealed that biological treatments have a definite impact on shaping the ARG profile. While there were several ARGs which got removed after the treatment, there were some ARGs which showed an increase in relative abundance irrespective of location and treatment plant specific variables. On comparing different aquatic environments, the algorithm identified ARGs which were specific to certain environments. The algorithm captured certain ARGs which were specific to hospital discharges when compared with other aquatic environments. It was determined that the proposed method was efficient in identifying the discriminatory ARGs which could classify the samples according to their groups. Further, it was also effective in capturing low-level variations which generally get over-shadowed in the analysis due to highly abundant genes. The results of this study suggest that the proposed method is an effective method for comprehensive analyses and can provide valuable information to better understand antibiotic resistance.