Management of Complex Sociotechnical Systems

Files
TR Number
Date
2020-04-20
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

Sociotechnical systems (STSs) rely on the collaboration between humans and autonomous decision-making units to fulfill their objectives. Highly intertwined social and technical contextual factors influence the collaboration between these human and engineered elements, and consequently the performance characteristics of the STS. In the next two decades, the role allocated to STSs in our society will drastically increase. Thus, the effective design of STSs requires an improved understanding of the human-autonomy interdependency.

This dissertation brings together management science along with systems thinking and uses a mixed-methods approach to investigate the interdependencies between people and the autonomous systems they collaborate within complex socio-technical enterprises. The dissertation is organized in three mutually exclusive essays, each investigating a distinct facet of STSs: safe management, collaboration, and efficiency measurement.

The first essay investigates the amount of work allocated to safety-critical decision makers and quantifies Rasmussen's workload boundary that represents the limit of attainable workload. The major contribution of this study is to quantify the qualitative theoretical construct of the workload boundary through a Pareto-Koopmans frontier. This frontier allows one to capture the aggregate impact of the social and technical factors that originate from operational conditions on workload.

The second essay studies how teams of humans and their autonomous partners share work, given their subjective preferences and contextual operational conditions. This study presents a novel integration of machine learning algorithms in an efficiency measurement framework to understand the influence of contextual factors. The results demonstrate that autonomous units successfully handle relatively simple operational conditions, while complex operational conditions require both workers and their autonomous counterparts to collaborate towards common objectives.

The third essay explores the complementary and contrasting roles of efficiency measurement approaches that deal with the influence of contextual factors and their sensitivity to sample size. The results are organized in a structured taxonomy of their fundamental assumptions, limitations, mathematical structure, sensitivity to sample size, and their practical usefulness.

To summarize, this dissertation provides an interdisciplinary and pragmatic research approach that benefits from the strengths of both theoretical and data-driven empirical approaches. Broader impacts of this dissertation are disseminated among the literatures of systems engineering, operations research, management science, and mechanical design.

Description
Keywords
sociotechnical systems, autonomous systems, infrastructure systems engineering, efficiency performance measurement, data envelopment analysis (DEA), Machine learning, multivariate statistics, revealed stakeholder preferences, meta-frontier
Citation