Non-equilibrium behavior at a liquid-gas critical point

dc.contributor.authorSantos, J. E.en
dc.contributor.authorTäuber, Uwe C.en
dc.contributor.departmentPhysicsen
dc.date.accessioned2016-09-30T00:31:34Zen
dc.date.available2016-09-30T00:31:34Zen
dc.date.issued2002-08-01en
dc.description.abstractSecond-order phase transitions in a non-equilibrium liquid-gas model with reversible mode couplings, i.e., model H for binary-fluid critical dynamics, are studied using dynamic field theory and the renormalization group. The system is driven out of equilibrium either by considering different values for the noise strengths in the Langevin equations describing the evolution of the dynamic variables (effectively placing these at different temperatures), or more generally by allowing for anisotropic noise strengths, i.e., by constraining the dynamics to be at different temperatures in d<sub>||</sub>- and d<sub>⊥</sub>-dimensional subspaces, respectively. In the first, <i>isotropic case</i>, we find one infrared-stable and one unstable renormalization group fixed point. At the stable fixed point, detailed balance is dynamically restored, with the two noise strengths becoming asymptotically equal. The ensuing critical behavior is that of the standard equilibrium model H. At the novel unstable fixed point, the temperature ratio for the dynamic variables is renormalized to infinity, resulting in an effective decoupling between the two modes. We compute the critical exponents at this new fixed point to one-loop order. For model H with spatially <i>anisotropic</i> noise, we observe a critical softening only in the d<sub>⊥</sub>-dimensional sector in wave vector space with lower noise temperature. The ensuing effective two-temperature model H does not have any stable fixed point in any physical dimension, at least to one-loop order. We obtain formal expressions for the novel critical exponents in a double expansion about the upper critical dimension d<sub></sub> = 4 – d<sub></sub> and with respect to d<sub></sub>, i.e., about the equilibrium theory.en
dc.description.versionPublished versionen
dc.format.extent423 - 440 (18) page(s)en
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1140/epjb/e2002-00246-2en
dc.identifier.issn1434-6028en
dc.identifier.issue4en
dc.identifier.urihttp://hdl.handle.net/10919/73097en
dc.identifier.volume28en
dc.language.isoenen
dc.publisherSpringer-Verlagen
dc.relation.urihttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000178006900006&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=930d57c9ac61a043676db62af60056c1en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.titleNon-equilibrium behavior at a liquid-gas critical pointen
dc.title.serialEuropean Physical Journal Ben
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Scienceen
pubs.organisational-group/Virginia Tech/Science/COS T&R Facultyen
pubs.organisational-group/Virginia Tech/Science/Physicsen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
0204195v1.pdf
Size:
328.56 KB
Format:
Adobe Portable Document Format
Description:
Accepted Version
License bundle
Now showing 1 - 1 of 1
Name:
VTUL_Distribution_License_2016_05_09.pdf
Size:
18.09 KB
Format:
Adobe Portable Document Format
Description: