Effect of DERs on the Voltage Stability of Transmission Systems using a Voltage Stability Index

TR Number
Journal Title
Journal ISSN
Volume Title
Virginia Tech

Interconnection of DERs into the transmission lines is starting to take a substantial share of the total power capacity. Although the largest share of power generation attributes to coal and gas power plants, renewable energy is gradually increasing. However, in the past, the size of DERs was relatively smaller, and rooftop PV was the dominant renewable energy source. As a result, the studies for interconnection focused on those rooftop PVs on the distribution side. Since the scenario is slowly changing as more utilities increase the share of clean energy by building large-scale solar farms and wind farms, it is necessary to study the effect of those DERs in the transmission system. Among the various issues, this work focuses on the impact on a transmission system's voltage stability. When the voltage stability at a point in the system is compromised, it can affect the entire power system's overall security, quality, and reliability. Therefore, this work aims to assess the system's stress due to increased loading conditions and increased growth of DERs integration. A steady-state voltage stability index is used to generate a heat-map that identifies the areas where the system can go unstable in events like the loss of the renewable generation under a bus. The steady-state simulation is performed on the IEEE 14 bus system in Distributed Engineering Workstation (DEW) to find the system's weak links using the stability heat-map. DERs are added to the corresponding weak buses, and the improvement in the stability margin for various penetration levels are studied. The results obtained from the steady-state analysis are also verified using the dynamic simulation of the model using OpenModelica.

Voltage Stability, Stability Margin, Distributed Energy Resources, System Reliability, Transmission Planning