Buckling of an equatorial segment of a spherical shell loaded by its own weight

TR Number
Date
1966
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Polytechnic Institute
Abstract

Nonlinear shallow shell equations are derived for a thin shell of revolution having the shape of a narrow segment of a toroidal shell centered at the equator. The equations are derived by considering a cylindrical shell, described by nonlinear Donnell theory, with an initial radial deformation. Linear buckling equations are obtained by perturbing the nonlinear shell equations. The buckling equations are solved for the case of a simple supported equatorial segment of a spherical shell loaded in the axial direction by its own weight. Plots are presented which compare a critical thickness parameter with the results of an elementary approach. The elementary approach assumes that the shell will buckle if the maximum compressive stress is greater than the critical compressive stress for a complete sphere loaded by uniform external pressure.

Description
Keywords
Citation
Collections