Recognition of aerospace acoustic sources using advanced pattern recognition techniques

dc.contributor.authorScott, Emily A.en
dc.contributor.departmentMechanical Engineeringen
dc.date.accessioned2014-03-14T21:30:27Zen
dc.date.adate2010-03-02en
dc.date.available2014-03-14T21:30:27Zen
dc.date.issued1991en
dc.date.rdate2010-03-02en
dc.date.sdate2010-03-02en
dc.description.abstractAn acoustic pattern recognition system has been developed to identify aerospace acoustic sources. The system is capable of classifying five different types of air and ground sources: jets, propeller planes, helicopters, trains, and wind turbines. The system consists of one microphone for data acquisition, a preprocessor, a feature selector, and a classifier. This thesis presents two new classifiers, one based on an associative memory and one on artificial neural networks, and compares their performance to that of the original classifier developed at VPI&SU (1,2). The acoustic patterns are classified using features that have been calculated from the time and frequency domains. Each of the classifiers undergoes a training period during which a set of known patterns is used to teach the classifier to classify unknown patterns correctly. Once training was completed each classifier is tested using a new set of unknown data. Two different classifier structures were tested, a single level structure and a tree structure. Results show that the single level associative memory and artificial neural network classifiers each identified 90.6 percent of the acoustic sources correctly. The original linear discriminant function single level classifier (1,2) identified 86.7 percent of the sources. The tree structure classifiers classified respectively 90.6 percent, 91.8 percent, and 90.1 percent of the sources correctly.en
dc.description.degreeMaster of Scienceen
dc.format.extentx, 194 leavesen
dc.format.mediumBTDen
dc.format.mimetypeapplication/pdfen
dc.identifier.otheretd-03022010-020131en
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-03022010-020131/en
dc.identifier.urihttp://hdl.handle.net/10919/41319en
dc.language.isoenen
dc.publisherVirginia Techen
dc.relation.haspartLD5655.V855_1991.S367.pdfen
dc.relation.isformatofOCLC# 23991309en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.lccLD5655.V855 1991.S367en
dc.subject.lcshAcoustic filtersen
dc.subject.lcshAirport noise -- Researchen
dc.subject.lcshPattern recognition systems -- Researchen
dc.titleRecognition of aerospace acoustic sources using advanced pattern recognition techniquesen
dc.typeThesisen
dc.type.dcmitypeTexten
thesis.degree.disciplineMechanical Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
LD5655.V855_1991.S367.pdf
Size:
7.89 MB
Format:
Adobe Portable Document Format
Description:

Collections