The role of long-term tectonic deformation on present day seismicity in the Caribbean and Central America

TR Number
Journal Title
Journal ISSN
Volume Title
Virginia Tech

The Caribbean and Central America region (CCAR) undergoes the entire spectrum of earthquake types due to its complex tectonic setting comprised of transform zones, young oceanic spreading ridges, and subduction along its eastern and western boundaries. CCAR is, therefore, an ideal setting in which to study the impacts of long-term tectonic deformation on the distribution of present-day seismic activity. In this work, we develop a revised continuous tectonic strain rate model based on interseismic, secular geodetic data. We compare it with its predecessor, the Global Strain Rate Model v2.1 (GSRM). Specifically, we compare predicted fault types with known active faults and evaluate the style of predicted fault types with present-day earthquake focal mechanism data. We first create a 0.25circ x 0.25circ finite element grid that is comprised of block geometries defined from previous studies. Second, we isolate and remove anomalous signals that are inconsistent with rigid block motion from the latest open access community Global Navigation Satellite System (GNSS) velocity solution from UNAVCO and combine it with GNSS data compiled for the GSRM. In a third step, we delineate zones of deformation and rigidity by creating a buffer around the boundary of each block that varies depending on the size of the block and the expected deformation zone, which are based on locations of GNSS data consistent with rigid block motion. Fourth, we assign the regions within the buffer of zero for the deforming areas and a plate index outside the buffer to constrain plate rigidity. Finally, we calculate a tectonic strain rate and continuous velocity model for CCAR using the Haines and Holt finite element approach to fit bicubic Bessel splines to the GNSS data assuming block rotation for zones of rigidity. Our model of the CCAR is consistent with compression along subduction zones, extension across the East Pacific Rise, and a combination of compression and extension across the North America - Caribbean plate boundary with a few exceptions due to limitations with the modeling approach. Modeling results are then used to calculate expected faulting behaviors that we compare with seismic activity, the GSRM, and mapped geologic faults. We find the accumulation of strain rates in areas near the Middle American Trench, Hispaniola, the northeastern Caribbean, and northern South America indicate tectonic deformation that may result in seismic events. We conclude the tectonic deformation plays a critical role in explaining present-day seismicity along land masses adjacent to the subduction zone and the Hispaniola block.

geodesy, tectonophysics, strain rates, Caribbean and Central America