Characterization and Response of Thermoplastic Composites and Constituents

TR Number
Date
2010-06-01
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

The research presented herein is an effort to support computational modeling of ultra-high molecular weight polyethylene (UHMWPE) composites. An effort is made to characterize the composites and their constituents. UHMWPE, as a polymer, is time and temperature dependent. Using time-temperature superposition (tTSP), the constituent properties are studied as a function of strain rate. Properties that are believed to be significant are fiber tensile properties as a function of strain rate, as well as the through-thickness shear behavior of composite laminates. Obtaining fiber properties proved to be a challenge. The high strength and low surface energy of the fibers makes gripping specimens difficult. Several different methods of fixturing and gripping are investigated, eventually leading to a combination of friction and adhesion approaches where a fiber was wrapped on an adhesive coated cardboard mandrel and then gripped in the test fixture. Fiber strength is estimated using tTSP to equivalent strain rates approaching 10^6 sec^-1. Punch-shear testing of UHMWPE laminates is conducted at quasi-static strain rates and the dependence of the results on thickness and test geometry is investigated.

Description
Keywords
UHMWPE, Time-temperature superposition, composite materials
Citation
Collections