Notes on gauging noninvertible symmetries. Part II. Higher multiplicity cases

dc.contributor.authorPerez-Lona, Alonsoen
dc.contributor.authorRobbins, D.en
dc.contributor.authorSharpe, Eric R.en
dc.contributor.authorVandermeulen, T.en
dc.contributor.authorYu, Xingyangen
dc.date.accessioned2025-05-12T11:57:02Zen
dc.date.available2025-05-12T11:57:02Zen
dc.date.issued2025-05-07en
dc.date.updated2025-05-11T03:20:47Zen
dc.description.abstractIn this paper we discuss gauging noninvertible zero-form symmetries in two dimensions, extending our previous work. Specifically, in this work we discuss more general gauged noninvertible symmetries in which the noninvertible symmetry is not multiplicity free, and discuss the case of Rep(A4) in detail. We realize Rep(A4) gaugings for the c = 1 CFT at the exceptional point in the moduli space and find new self-duality under gauging a certain non-group algebra object, leading to a larger noninvertible symmetry Rep(SL(2, ℤ3)). We also discuss more general examples of decomposition in two-dimensional gauge theories with trivially-acting gauged noninvertible symmetries.en
dc.description.versionPublished versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationJournal of High Energy Physics. 2025 May 07;2025(5):66en
dc.identifier.doihttps://doi.org/10.1007/JHEP05(2025)066en
dc.identifier.urihttps://hdl.handle.net/10919/131422en
dc.language.isoenen
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.holderThe Author(s)en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.titleNotes on gauging noninvertible symmetries. Part II. Higher multiplicity casesen
dc.title.serialJournal of High Energy Physicsen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
13130_2025_Article_26141.pdf
Size:
2.19 MB
Format:
Adobe Portable Document Format
Description:
Published version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Item-specific license agreed upon to submission
Description: