New Results on Selection Diversity over Fading Channels

Files
TR Number
Date
2003-01-08
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

This thesis develops a mathematical framework for analyzing the average bit error rate performance of five different selection diversity combining schemes over slow, frequency non-selective Rayleigh, Nakagami-m and Ricean fading channels. Aside from the classical selection diversity, generalized selection combining and the "maximum output" selection methods, two new selection rules based on choosing the branch providing the largest magnitude of log-likelihood ratio for binary phase shift keying signals (with and without phase compensation in the selection process) are also investigated. The proposed analytical framework is sufficiently general to study the effects of dissimilar fading parameter and unequal mean received signal strengths across the independent diversity paths. The effect of branch correlation on the performance of a dual-diversity system is also studied. The accuracies of our analytical expressions have been validated by extensive Monte-Carlo simulation runs. The proposed selection schemes based on the log-likelihood ratio are attractive in the design of low-complexity rake receivers for wideband CDMA and ultra wideband communication systems.

Description
Keywords
low-complexity receiver design, multipath fading, diversity reception
Citation
Collections