Low-Power Wireless Sensor Node with Edge Computing for Pig Behavior Classifications
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
A wireless sensor node (WSN) system, capable of sensing animal motion and transmitting motion data wirelessly, is an effective and efficient way to monitor pigs' activity. However, the raw sensor data sampling and transmission consumes lots of power such that WSNs' battery have to be frequently charged or replaced. The proposed work solves this issue through WSN edge computing solution, in which a Random Forest Classifier (RFC) is trained and implemented into WSNs. The implementation of RFC on WSNs does not save power, but the RFC predicts animal behavior such that WSNs can adaptively adjust the data sampling frequency to reduce power consumption. In addition, WSNs can transmit less data by sending RFC predictions instead of raw sensor data to save power. The proposed RFC classifies common animal activities: eating, drinking, laying, standing, and walking with a F-1 score of 93%. The WSN power consumption is reduced by 25% with edge computing intelligence, compare to WSN power that samples and transmits raw sensor data periodically at 10 Hz.