Analyzing Attitude Correction of a Spacecraft Due to the Motion of a Robotic Arm Payload

TR Number

Date

2024-06-06

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

There are millions of pieces of space debris in orbit around Earth that pose threats to operating spacecraft. Some of these debris can be attributed to satellite failure, or end-of-life protocols. With a continual increase in commercial satellite launches per year, decommissioned spacecraft act as more debris polluting the space environment. Not only can robotic arms assist with active orbital debris removal to be more sustainable, they also support robotic on-orbit servicing (OOS). Additionally, using a robotic manipulator enables different servicing operations to take place, allowing for life extension capabilities for expired spacecraft. These life extension services allow for a broader application for robotic arms, which includes rendezvous proximity operations and docking. Robotic arms can also be used for assembly and manufacturing cases, establishing a more sustained presence and creating permanent structures in space. When considering any robotic rendezvous maneuvers or servicing, assembly, and manufacturing tasks aboard a spacecraft, it is important for the parent satellite to maintain attitude throughout robot motion, as in a zero gravity setting, any forces created by the robot act as equal and opposite forces applied to the parent spacecraft. The research performed in this thesis aims to create a model to describe changes in attitude throughout planned robot motion, as well as introduce methods for compensating for potential disturbances. Additionally, methods for describing the kinematics of a robot manipulator are presented and the forces and torques experienced by each joint are calculated using Newton-Euler inverse dynamics. Based on a calculated trajectory of the end effector, these torques are propagated to the parent spacecraft to determine the change in angular velocity. The results of this analysis are used to determine the required angular velocity to apply to the parent spacecraft in order to maintain attitude.

Description

Keywords

Space Robotics, Spacecraft Attitude, Torque, Angular Velocity

Citation

Collections