Modeling Driver Behavior and I-ADAS in Intersection Traversals

TR Number
Date
2023-12-20
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

Intersection Advance Driver Assist Systems (I-ADAS) may prevent 25 to 93% of intersection crashes. The effectiveness of I-ADAS will be limited by driver's pre-crash behavior and other environmental factors. This study will characterize real-world intersection traversals to evaluate the effectiveness of I-ADAS while accounting for driver behavior in crash and near-crash scenarios. This study characterized real-world intersection traversals using naturalistic driving datasets: the Second Strategic Highway Research Program (SHRP-2) and the Virginia Traffic Cameras for Advanced Safety Technologies (VT-CAST) 2020. A step-by-step approach was taken to create an algorithm that can identify three different intersection traversal trajectories: straight crossing path (SCP); left turn across path opposite direction (LTAP/OD); and left turn across path lateral direction (LTAP/LD). About 140,000 intersection traversals were characterized and used to train a unique driver behavior model. The median average speed for all encounter types was about 7.2 m/s. The driver behavior model was a Markov Model with a multinomial regression that achieved an average 90.5% accuracy across the three crash modes. The model used over 124,000 total intersection encounters including 301 crash and near-crash scenarios. I-ADAS effectiveness was evaluated with realistic driver behavior in simulations of intersection traversal scenarios based on proposed US New Car Assessment Program I-ADAS test protocols. All near-crashes were avoided. The driver with I-ADAS overall helped avoid more crashes. For SCP and LTAP the collisions avoided increased as the field of view of the sensor increased in I-ADAS only simulations. There were 18% crash scenarios that were not avoided with I-ADAS with driver. Among near-crash scenarios, where NHTSA expects no I-ADAS activation, there were fewer I-ADAS activations (58.5%) due to driver input compared to the I-ADAS only simulations (0%).

Description
Keywords
Advanced Driver Assist Systems, crashes, driver behavior, intersection, real-world data
Citation
Collections