Discrete Element Modeling of Railway Ballast for Studying Railroad Tamping Operation
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The behavior of the ballast particles during their interaction with tamping tines in tamping operation is studied by developing a simulation model using the Discrete Element Model (DEM), with the aim of optimizing the railroad tamping operation. A comprehensive literature review is presented showcasing the applicability of DEM techniques in modeling ballast behavior and its feasibility in studying the fundamental mechanisms that influence the outcome of railroad tamping process is analyzed. The analysis shows that DEM is an excellent tool to study tamping operation as its important and unprecedented insights into the process, help not only to optimize the current tamping practices but also in the development of novel methods for achieving sustainable improvements in the track stability after tamping. The simulation model is developed using a commercially available DEM software called PFC3D (Particle Flow Code 3D).
A detailed explanation is provided about how to set up the DEM model of railway ballast considering important parameters like selection and calibration of particle shapes, ballast mechanical properties, contact model, and parameters governing the contact force models. Tamping operation is incorporated into the simulation model using a half-track layout with a highly modular code that enables a high degree of adjustability to allow control of all process parameters for achieving optimized output. A parametric study is performed to find the best values of tine motion parameters to optimize the linear tamping efficiency and a performance comparison has been made between linear and elliptical tamping. It is found that squeeze and release velocity of the tines should be lesser for better compaction of the particles and linear tamping is better compared to elliptical tamping.