H2OGAN: A Deep Learning Approach for Detecting and Generating Cyber-Physical Anomalies
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The integration of Artificial Intelligence (AI) into water supply systems (WSSs) has revolutionized real-time monitoring, automated operational control, and predictive decision-making analytics. However, AI also introduces security vulnerabilities, such as data poisoning. In this context, data poisoning could involve the malicious manipulation of critical data, including water quality parameters, flow rates, and chemical composition levels. The consequences of such threats are significant, potentially jeopardizing public safety and health due to decisions being made based on poisoned data. This thesis aims to exploit these vulnerabilities in data-driven applications within WSSs. Proposing Water Generative Adversarial Networks, H2OGAN, a time-series GAN-based model designed to synthesize water data. H2OGAN produces water data based on the characteristics within the expected constraints of water data cardinality. This generative model serves multiple purposes, including data augmentation, anomaly detection, risk assessment, cost-effectiveness, predictive model optimization, and understanding complex patterns within water systems. Experiments are conducted in AI and Cyber for Water and Agriculture (ACWA) Lab, a cyber-physical water testbed that generates datasets replicating both operational and adversarial scenarios in WSSs. Identifying adversarial scenarios is particularly importance due to their potential to compromise water security. The datasets consist of 10 physical incidents, including normal conditions, sensor anomalies, and malicious attacks. A recurrent neural network (RNN) model, i.e., gated recurrent unit (GRU), is used to classify and capture the temporal dynamics those events. Subsequently, experiments with real-world data from Alexandria Renew Enterprises (AlexRenew), a wastewater treatment plant in Alexandria, Virginia, are conducted to assess the effectiveness of H2OGAN in real-world applications.