Investigation and Analysis of the Effect of Industrial Drums and Plastic Pails on Wooden Pallets throughout the Supply Chain

TR Number

Date

2021-10-05

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

In the supply chain there are three components: transportation method, the pallet, and the packaging. Traditionally, there has been a poor understanding of the way that pallet design can impact the supply chain. There are historical studies that illustrate the importance of investigating how box stacking pattern, unit load type, unit load size, and containment can impact the pallet's performance. However, there have been no studies that have investigated the impact of drums and plastic pails on pallet performance.

The goal of the current research study was to investigate how plastic pails and drums affect pallet bending and the distribution of the pressure on the top surface of the pallet. The investigation was conducted using four different support conditions commonly found in warehouses: racking across the width and length, single stacking, and double stacking. The results of the investigation indicated that for most support conditions, loading the pallet with plastic pails or drums results in a significant reduction in deflection when compared to a uniformly distributed load. The maximum observed reduction in pallet deflection was 85% when testing with drums in the double stack condition and 89% when testing with plastic pails in the single stack condition. The large reductions in deflection could indicate that the pallets were over-designed for the unit load that they were supporting.

Pressure mat distribution images collected during the experiment display a load bridging effect where the stress of the drums and pails are redistributed to the supported sides of the pallet. The data also show that drums made of different materials distribute the pressure onto the pallet in a significantly different manner.

Description

Keywords

Pallets, Load Bridging, Industrial Drums, Pails, Unit Load, Packaging, Pressure Distribution

Citation

Collections