Wheat Yield and Protein Estimation with Handheld and Unmanned Aerial Vehicle-Mounted Sensors
dc.contributor.author | Walsh, Olga S. | en |
dc.contributor.author | Marshall, Juliet M. | en |
dc.contributor.author | Nambi, Eva | en |
dc.contributor.author | Jackson, Chad A. | en |
dc.contributor.author | Ansah, Emmanuella Owusu | en |
dc.contributor.author | Lamichhane, Ritika | en |
dc.contributor.author | McClintick-Chess, Jordan | en |
dc.contributor.author | Bautista, Francisco | en |
dc.date.accessioned | 2025-01-22T14:22:28Z | en |
dc.date.available | 2025-01-22T14:22:28Z | en |
dc.date.issued | 2023-01-10 | en |
dc.description.abstract | Accurate sensor-based prediction of crop yield and grain quality in-season would enable growers to adjust nitrogen (N) fertilizer management for optimized production. This study assessed the feasibility (and compared the accuracy) of wheat (Triticum aestivum L.) yield, grain N uptake, and protein content prediction with in-season crop spectral reflectance measurements (Normalized Difference Vegetative Index, NDVI) obtained with a handheld GreenSeeker (GS) sensor and an Unmanned Aerial Vehicle (UAV)-mounted sensor. A strong positive correlation was observed between GS NDVI and UAV NDVI at Feekes 5 (R2 = 0.78) and Feekes 10 (R2 = 0.70). At Feekes 5, GS NDVI and UAV NDVI explained 42% and 43% of wheat yield, respectively. The correlation was weaker at Feekes 10 (R2 of 0.34 and 0.25 for GS NDVI and UAV NDVI, respectively). The accuracy of wheat grain N uptake prediction was comparable to that of yield: the R2 values for GS NDVI and UAV NDVI were 0.53 and 0.37 at Feekes 5 and 0.13 and 0.20 at Feekes 10. We found that neither GS NDVI nor UAV NDVI in-season data were useful in prediction of wheat grain protein content. In conclusion, wheat yield and grain N uptake can be estimated at Feekes 5 using either handheld or aerial based NDVI with comparable accuracy. | en |
dc.description.version | Published version | en |
dc.format.extent | 14 page(s) | en |
dc.format.mimetype | application/pdf | en |
dc.identifier | ARTN 207 (Article number) | en |
dc.identifier.doi | https://doi.org/10.3390/agronomy13010207 | en |
dc.identifier.eissn | 2073-4395 | en |
dc.identifier.issn | 2073-4395 | en |
dc.identifier.issue | 1 | en |
dc.identifier.orcid | Walsh, Olga [0000-0002-2958-931X] | en |
dc.identifier.uri | https://hdl.handle.net/10919/124309 | en |
dc.identifier.volume | 13 | en |
dc.language.iso | en | en |
dc.publisher | MDPI | en |
dc.rights | Creative Commons Attribution 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | normalized difference vegetative index | en |
dc.subject | handheld sensor | en |
dc.subject | unmanned aerial vehicle | en |
dc.subject | wheat | en |
dc.subject | grain yield | en |
dc.subject | grain protein | en |
dc.subject | grain N uptake | en |
dc.title | Wheat Yield and Protein Estimation with Handheld and Unmanned Aerial Vehicle-Mounted Sensors | en |
dc.title.serial | Agronomy | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
dc.type.other | Article | en |
dc.type.other | Journal | en |
pubs.organisational-group | Virginia Tech | en |
pubs.organisational-group | Virginia Tech/Agriculture & Life Sciences | en |
pubs.organisational-group | Virginia Tech/All T&R Faculty | en |
pubs.organisational-group | Virginia Tech/Agriculture & Life Sciences/CALS T&R Faculty | en |
pubs.organisational-group | Virginia Tech/Agriculture & Life Sciences/School of Plant and Environmental Sciences | en |