VTechWorks staff will be away for the winter holidays starting Tuesday, December 24, 2024, through Wednesday, January 1, 2025, and will not be replying to requests during this time. Thank you for your patience, and happy holidays!
 

Evaluating the potential of aerial remote sensing in flue-cured tobacco

TR Number

Date

2019-06-18

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Flue-cured tobacco (Nicotiana tabacum L.) is a high value-per-acre crop that is intensively managed to optimize the yield of high quality cured leaf. Aerial remote sensing, specifically unmanned aerial vehicles (UAVs), present flue-cured tobacco producers and researchers with a potential tool for scouting and crop management. A two-year study, conducted in Southside Virginia at the Southern Piedmont Agricultural Research and Extension Center and on commercial farms, assessed the potential of aerial remote sensing in flue-cured tobacco. The effort encompassed two key objectives. First, examine the use of the enhanced normalized difference vegetation index (ENDVI) for separating flue-cured tobacco varieties and nitrogen rates. Secondly, develop hyperspectral indices and/or machine learning classification models capable of detecting Phytophthora nicotianae (black shank) incidence in flue-cured tobacco. In 2017, UAV-acquired ENDVI surveys demonstrated the ability to consistently separate between flue-cured tobacco varieties and nitrogen rates from topping to harvest. In 2018, ENDVI revealed significant differences among N-rates as early as 34 days after transplanting. Two hyperspectral indices were developed to detect black shank incidence based on differences in the spectral profiles of asymptomatic flue-cured tobacco plants compared to those with black shank symptoms. Testing of the indices showed significant differences between the index values of healthy and symptomatic plants (alpha = 0.05). In addition, the indices were able to detect black shank symptoms pre-symptomatically (alpha = 0.09). Subspace linear discriminant analysis, a machine learning classification, was also used for prediction of black shank incidence with up to 85.7% classification accuracy.

Description

Keywords

remote sensing, flue-cured tobacco, unmanned aerial vehicle, Drone aircraft, ENDVI, vegetation index, Nitrogen, black shank, Phytophthora nicotianae, hyperspectral imagery

Citation

Collections