Evaluating the potential of aerial remote sensing in flue-cured tobacco

TR Number

Date

2019-06-18

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Flue-cured tobacco (Nicotiana tabacum L.) is a high value-per-acre crop that is intensively managed to optimize the yield of high quality cured leaf. Aerial remote sensing, specifically unmanned aerial vehicles (UAVs), present flue-cured tobacco producers and researchers with a potential tool for scouting and crop management. A two-year study, conducted in Southside Virginia at the Southern Piedmont Agricultural Research and Extension Center and on commercial farms, assessed the potential of aerial remote sensing in flue-cured tobacco. The effort encompassed two key objectives. First, examine the use of the enhanced normalized difference vegetation index (ENDVI) for separating flue-cured tobacco varieties and nitrogen rates. Secondly, develop hyperspectral indices and/or machine learning classification models capable of detecting Phytophthora nicotianae (black shank) incidence in flue-cured tobacco. In 2017, UAV-acquired ENDVI surveys demonstrated the ability to consistently separate between flue-cured tobacco varieties and nitrogen rates from topping to harvest. In 2018, ENDVI revealed significant differences among N-rates as early as 34 days after transplanting. Two hyperspectral indices were developed to detect black shank incidence based on differences in the spectral profiles of asymptomatic flue-cured tobacco plants compared to those with black shank symptoms. Testing of the indices showed significant differences between the index values of healthy and symptomatic plants (alpha = 0.05). In addition, the indices were able to detect black shank symptoms pre-symptomatically (alpha = 0.09). Subspace linear discriminant analysis, a machine learning classification, was also used for prediction of black shank incidence with up to 85.7% classification accuracy.

Description

Keywords

remote sensing, flue-cured tobacco, unmanned aerial vehicle, Drone aircraft, ENDVI, vegetation index, Nitrogen, black shank, Phytophthora nicotianae, hyperspectral imagery

Citation

Collections