Rosenbrock-Krylov Methods for Large Systems of Differential Equations

dc.contributor.authorTranquilli, Paulen
dc.contributor.authorSandu, Adrianen
dc.contributor.departmentComputer Scienceen
dc.date.accessioned2017-03-06T18:37:45Zen
dc.date.available2017-03-06T18:37:45Zen
dc.date.issued2014-01-01en
dc.description.abstractThis paper develops a new class of Rosenbrock-type integrators based on a Krylov space solution of the linear systems. The new family, called Rosenbrock-Krylov (Rosenbrock-K), is well suited for solving large-scale systems of ODEs or semi-discrete PDEs. The time discretization and the Krylov space approximation are treated as a single computational process, and the Krylov space properties are an integral part of the new Rosenbrock-K order condition theory developed herein. Consequently, Rosenbrock-K methods require a small number of basis vectors determined solely by the temporal order of accuracy. The subspace size is independent of the ODE under consideration, and there is no need to monitor the errors in linear system solutions at each stage. Numerical results show favorable properties of Rosenbrock-K methods when compared to current Rosenbrock and Rosenbrock-W schemes.en
dc.description.versionPublished versionen
dc.format.extentA1313 - A1338 (26) page(s)en
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1137/130923336en
dc.identifier.issn1064-8275en
dc.identifier.issue3en
dc.identifier.urihttp://hdl.handle.net/10919/75274en
dc.identifier.volume36en
dc.language.isoenen
dc.publisherSiam Publicationsen
dc.relation.urihttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000338783300019&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=930d57c9ac61a043676db62af60056c1en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectMathematics, Applieden
dc.subjectMathematicsen
dc.subjectMATHEMATICS, APPLIEDen
dc.subjectRosenbrock methodsen
dc.subjectKrylov space approximationsen
dc.subjectButcher-treesen
dc.subjectDEFERRED CORRECTION METHODSen
dc.subjectW-METHODSen
dc.subjectALGEBRAIC EQUATIONSen
dc.subjectORDERen
dc.subjectAPPROXIMATIONSen
dc.subjectINDEX-1en
dc.subjectODESen
dc.titleRosenbrock-Krylov Methods for Large Systems of Differential Equationsen
dc.title.serialSIAM Journal of Scientific Computingen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Engineeringen
pubs.organisational-group/Virginia Tech/Engineering/COE T&R Facultyen
pubs.organisational-group/Virginia Tech/Engineering/Computer Scienceen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1305.5481v2.pdf
Size:
584.64 KB
Format:
Adobe Portable Document Format
Description:
Submitted Version
License bundle
Now showing 1 - 1 of 1
Name:
VTUL_Distribution_License_2016_05_09.pdf
Size:
18.09 KB
Format:
Adobe Portable Document Format
Description: