On the Feasibility of MapReduce to Compute Phase Space Properties of Graphical Dynamical Systems: An Empirical Study
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
A graph dynamical system (GDS) is a theoretical construct that can be used to simulate and analyze the dynamics of a wide spectrum of real world processes which can be modeled as networked systems. One of our goals is to compute the phase space of a system, and for this, even 30-vertex graphs present a computational challenge. This is because the number of state transitions needed to compute the phase space is exponential in the number of graph vertices. These problems thus produce memory and execution speed challenges. To address this, we devise various MapReduce programming paradigms that can be used to characterize system state transitions, compute phase spaces, functional equivalence classes, dynamic equivalence classes and cycle equivalence classes of dynamical systems. We also evaluate these paradigms and analyze their suitability for modeling different GDSs.