West Nile virus vaccination protects against Usutu virus disease in mice

TR Number

Date

2022-01-28

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Mosquito-borne viruses, including dengue virus (DENV), Usutu virus (USUV), West Nile virus (WNV), and Japanese encephalitis virus (JEV), are rapidly emerging, global pathogens. Though the number of people impacted by each virus varies, there have been thousands to millions of people infected. The focus of this thesis work centers around USUV and WNV; both have RNA genomes and belong to the Flaviviridae virus family. Both WNV and USUV were initially isolated in Africa and have since spread to Europe; interestingly, WNV has also spread globally and is considered endemic in the Americas. Similar to other flaviviruses, USUV and WNV are maintained in a mosquito vector-avian host transmission cycle, with spillover infection into humans. Human infections of WNV and USUV are usually asymptomatic, but in severe cases can cause neuroinvasive disease.

WNV and USUV belong to the JEV serocomplex group, which indicates that antibodies produced against these viruses share a common antigen; the common antigen is hypothesized to be the envelope (E) protein on the outside of the virion. Neutralizing antibodies against both WNV and USUV have been found in birds and humans across Europe. In vitro cross-neutralization of WNV and USUV has been modeled experimentally and been observed in clinical settings. The neutralizing antibody response generated against WNV has been studied extensively in mouse models; however, there are few studies which examine the neutralizing antibody response generated against USUV. Whether prior WNV exposure protects against USUV disease is also unknown.

The main goal of this thesis was to characterize how a primary flavivirus exposure would influence a secondary flavivirus exposure; specifically, we wanted to observe if WNV exposure would protect against USUV disease in vivo and generate a cross-neutralizing antibody response in vitro. For the WNV exposure, we used an attenuated vaccine strain of WNV that contains the WNV E gene (D2/WN-V3) developed by our collaborators. We hypothesized that treatment with D2/WN-V3 would protect against USUV infection. Two in vivo models were used: CD-1 mice and interferon alpha-beta receptor 1 deficient (Ifnar1-/-) mice. We discovered that sera from mice vaccinated with D2/WN-V3 neutralized both WNV and USUV in vitro. In the Ifnar1-/- model, we observed that vaccinated mice had higher survival rates and lower USUV viremia levels after USUV challenge.

This work helps characterize the consequences of flavivirus antibody cross-neutralization in vitro and cross-protection in vivo. As the flavivirus field moves toward the goal of creating a pan-flavivirus vaccine, both cross-reactive antibodies and cross-protection need to be considered.

Description

Keywords

Usutu virus, West Nile virus, neutralizing response, arbovirus, antibody

Citation

Collections