Seasonal Variation in Whole Stream Metabolism across Varying Land Use Types

dc.contributor.authorHart, Adam Michaelen
dc.contributor.committeechairWebster, Jackson R.en
dc.contributor.committeememberBenfield, Ernest F.en
dc.contributor.committeememberDolloff, C. Andrewen
dc.contributor.departmentBiological Sciencesen
dc.date.accessioned2013-06-22T08:00:07Zen
dc.date.available2013-06-22T08:00:07Zen
dc.date.issued2013-06-21en
dc.description.abstractHistorically, whole stream open channel metabolism has been measured over short periods in conjunction with nutrient injections to assess nutrient dynamics within streams. The purpose of my study was to understand the seasonal changes in metabolism within and among streams as well as the impacts of different land use. This was addressed by monitoring nine different watersheds in the Little Tennessee River watershed in southwestern North Carolina.  The nine study watersheds were selected to represent a gradient of forested, agricultural, and developed land use / land cover types. Data loggers were deployed to collect continuous oxygen, temperature, conductivity, and stage height data from 2010-2011. I used these data to estimate gross primary production (GPP) and ecosystem respiration (ER). GPP and ER were compared to stream chemistry, light, land cover, and storms. I found that there is greater influence of local riparian land cover than watershed land cover on GPP and ER. Streams had varying annual GPP, but generally the peak in GPP occurred in late winter- early spring with lows in fall. GPP was most strongly influenced by the amount of available light, which is directly related to the amount of canopy cover. ER was much more variable than GPP within and among streams but generally peaked in summer and was lowest in the winter. ER was most strongly related to the proportion of agricultural land cover in the local riparian area. My results suggest that local riparian vegetation may have a greater impact on metabolism than mountainside development.en
dc.description.degreeMaster of Scienceen
dc.format.mediumETDen
dc.identifier.othervt_gsexam:1324en
dc.identifier.urihttp://hdl.handle.net/10919/23256en
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectmetabolismen
dc.subjectgross primary productionen
dc.subjectrespirationen
dc.subjectstreamsen
dc.subjectexurbanizationen
dc.titleSeasonal Variation in Whole Stream Metabolism across Varying Land Use Typesen
dc.typeThesisen
thesis.degree.disciplineBiological Sciencesen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Hart_AM_T_2013.pdf
Size:
978.37 KB
Format:
Adobe Portable Document Format

Collections