Adiabatic Effectiveness Measurements of Leakage Flows along the Hub Region of Gas Turbine Engines
dc.contributor.author | Ranson, William Wayne | en |
dc.contributor.committeechair | Thole, Karen A. | en |
dc.contributor.committeemember | Vick, Brian L. | en |
dc.contributor.committeemember | O'Brien, Walter F. Jr. | en |
dc.contributor.department | Mechanical Engineering | en |
dc.date.accessioned | 2017-04-04T19:51:00Z | en |
dc.date.adate | 2004-05-28 | en |
dc.date.available | 2017-04-04T19:51:00Z | en |
dc.date.issued | 2004-05-11 | en |
dc.date.rdate | 2016-10-17 | en |
dc.date.sdate | 2004-05-12 | en |
dc.description.abstract | To prevent melting of turbine blades, numerous cooling schemes have been developed to cool the blades using cooler air from the compressor. Unfortunately, the clearance gap between adjacent hub sections allows coolant to leak into the hub region. Coolant flow also leaks into the hub region through gaps between individual stages. The results of a combined experimental and computational study of cooling along the hub of a first stage turbine blade caused by leakage flows are discussed in detail. Additionally, this study examines a novel cooling feature, called a microcircuit, which combines internal convective cooling with external film cooling. For the experimental investigation, scaled up blades were tested in a low speed wind tunnel. Adiabatic effectiveness measurements were made with infrared thermography of the entire hub region for a range of leakage flow conditions. For the computations, a commercially available computational fluid dynamics (CFD) code, FLUENT 6.0, was used to simulate the various flows. Results show that featherseal leakage flows provide small cooling benefits to the hub. Increases in featherseal flow provide no additional cooling to the hub region. Unlike the featherseal, leakage flows from the front rim provide ample cooling to the hub region, especially the leading edge of the blade passage. None of the leakage flows provide significant cooling to the pressure side region of the hub or trailing edge suction side. With the addition of the hub microcircuits, there is improved hub cooling of the suction side of the blades. Though the coolant exit uniformity was low and affected by the featherseal flow, the microcircuits were shown to provide more cooling along the hub region. Good agreements were observed between the computational and experimental results, though computations over-predicted front rim cooling and microcircuit uniformity. | en |
dc.description.degree | Master of Science | en |
dc.identifier.other | etd-05122004-105746 | en |
dc.identifier.sourceurl | http://scholar.lib.vt.edu/theses/available/etd-05122004-105746/ | en |
dc.identifier.uri | http://hdl.handle.net/10919/77017 | en |
dc.language.iso | en_US | en |
dc.publisher | Virginia Tech | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | endwall | en |
dc.subject | adiabatic effectiveness | en |
dc.subject | leakage flows | en |
dc.subject | microcircuit | en |
dc.subject | gas turbine | en |
dc.subject | featherseal | en |
dc.title | Adiabatic Effectiveness Measurements of Leakage Flows along the Hub Region of Gas Turbine Engines | en |
dc.type | Thesis | en |
dc.type.dcmitype | Text | en |
thesis.degree.discipline | Mechanical Engineering | en |
thesis.degree.grantor | Virginia Polytechnic Institute and State University | en |
thesis.degree.level | masters | en |
thesis.degree.name | Master of Science | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- etd-05122004-105746_WholeThesis.pdf
- Size:
- 7.24 MB
- Format:
- Adobe Portable Document Format