Low-cost Wireless Internet System for Rural India using Geosynchronous Satellite in an Inclined Orbit

dc.contributor.authorDesai, Karanen
dc.contributor.committeechairPratt, Timothy J.en
dc.contributor.committeememberReed, Jeffrey H.en
dc.contributor.committeememberRuohoniemi, J. Michaelen
dc.contributor.departmentElectrical and Computer Engineeringen
dc.date.accessioned2014-03-14T21:35:38Zen
dc.date.adate2011-05-24en
dc.date.available2014-03-14T21:35:38Zen
dc.date.issued2011-04-28en
dc.date.rdate2011-05-24en
dc.date.sdate2011-05-04en
dc.description.abstractProviding affordable Internet access to rural populations in large developing countries to aid economic and social progress, using various non-conventional techniques has been a topic of active research recently. The main obstacle in providing fiber-optic based terrestrial Internet links to remote villages is the cost involved in laying the cable network and disproportionately low rate of return on investment due to low density of paid users. The conventional alternative to this is providing Internet access using geostationary satellite links, which can prove commercially infeasible in predominantly cost-driven rural markets in developing economies like India or China due to high access cost per user. A low-cost derivative of the conventional satellite-based Internet access system can be developed by utilizing an aging geostationary satellite nearing the end of its active life, allowing it to enter an inclined geosynchronous orbit by limiting station keeping to only east-west maneuvers to save fuel. Eliminating the need for individual satellite receiver modules by using one centrally located earth station per village and providing last mile connectivity using Wi-Fi can further reduce the access cost per user. A Ku band system design for rural India based on this concept, using an Intelsat 906 satellite is proposed in this thesis. The path of the satellite and the tracking requirements at village stations are determined. Components required for various blocks of the system are defined. Modulation schemes, FEC, data rates, number of customers to be served, link availability and outage statistics are presented. Quantitative analysis using link budgets and ITU rain models are provided. An optimized system design and a commercial deployment model are suggested which show the system is economically feasible.en
dc.description.degreeMaster of Scienceen
dc.identifier.otheretd-05042011-225751en
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-05042011-225751/en
dc.identifier.urihttp://hdl.handle.net/10919/42495en
dc.language.isoenen
dc.publisherVirginia Techen
dc.relation.haspartDesai_KR_T_2011_1.pdfen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectGeostationary Satelliteen
dc.subjectWirelessen
dc.subjectRural Communicationen
dc.subjectInclined Orbiten
dc.subjectLow-costen
dc.subjectInterneten
dc.titleLow-cost Wireless Internet System for Rural India using Geosynchronous Satellite in an Inclined Orbiten
dc.typeThesisen
thesis.degree.disciplineElectrical and Computer Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Desai_KR_T_2011_1.pdf
Size:
10.36 MB
Format:
Adobe Portable Document Format

Collections