Drag Reduction by Polymeric Additive Solutions

TR Number

Date

2023-10-18

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Historically, the addition of polymers to turbulent flows of Newtonian fluids has been known to effectively reduce turbulent friction drag by up to 80 %. Conducted in the Hydrodynamics Laboratory in Virginia Tech, this research presents a comprehensive analysis into drag reducing effects through experimental, theoretical, and computational analyses. A major focus of this research was the evaluation of one of the newest viscoelastic Reynolds Averaged Navier-Stokes (RANS) turbulence models. Based on the k−ε−v 2−f framework, this model describes the viscoelastic effects of polymer additives using the Finitely Extensible Nonlinear Elastic-Peterlin (FENEP) constitutive model. To evaluate its accuracy, multiple simulation scenarios were benchmarked against Direct Numerical Simulation (DNS) data. Results indicated, that the viscoelastic RANS turbulence model shows a high accuracy against DNS percentages of drag reduced when dealing with higher solvent viscosity to polymer viscosity ratios, but revealed inconsistencies at lower ratios. Additionally, our theoretical and empirical flow rates from the inclined channel were closely aligned. The results of this study highlight the significant capacity of polymer additives to improve energy efficiency in industries that heavily rely on fluids

Description

Keywords

Computational Fluid Dynamics, OpenFOAM, Drag Reduction, Polymer

Citation

Collections