Analysis of Transfer Trajectories Utilizing Sequential Saturn-Titan Aerocaptures
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
This thesis aims to investigate the potential of a transfer orbit using successive aerocaptures at Saturn and Titan to establish a science orbit around Titan. Titan is an Earth-like moon with a dense atmosphere and organic compounds present. It has many similarities with Earth that are useful to study such as superrotation. Superrotation is when the atmosphere rotates faster than the body it surrounds. In order to study Titan, we need to establish an orbit around it. The Saturn system is distant from Earth, 8.5 Astronomical Units (AU) which makes it difficult to reach from a time and velocity point of view. We propose to use an aerocapture at Saturn to intercept Titan with lower relative velocity in order to perform an aerocapture at Titan. The analysis was performed in primarily MATLAB to simulate the orbits. The results of this showed that we can aerocapture a spacecraft at Saturn and arrive at Titan within roughly 4 to 8 km/s relative velocity regardless of the incoming hyperbolic excess velocity at the Saturn system. This can be improve upon by using intermediate transfer orbits, such as bi-elliptics, to arrive with even lower relative velocities to Titan of as low as 1 km/s. The drag acceleration experienced during the Saturn aerocapture had peak values of between 0.2 and 1.4 g's and acceleration over 50% of the peak is experienced between 6.8 and 8 minutes. This capture method has the potential to make Titan more easily accessible and allow for scientific study of a clear target for improving our understanding of Earth-like processes on other bodies in our solar system.