A duality approach to spline approximation

dc.contributor.authorBonawitz, Elizabeth Annen
dc.contributor.committeechairRussell, David L.en
dc.contributor.committeememberJohnson, Lee W.en
dc.contributor.committeememberRogers, Robert C.en
dc.contributor.committeememberKohler, Werner E.en
dc.contributor.committeememberSun, Shu-Mingen
dc.contributor.departmentMathematicsen
dc.date.accessioned2014-03-14T21:09:54Zen
dc.date.adate2006-03-02en
dc.date.available2014-03-14T21:09:54Zen
dc.date.issued1994-04-21en
dc.date.rdate2006-03-02en
dc.date.sdate2006-03-02en
dc.description.abstractThis dissertation discusses a new approach to spline approximation. A periodic spline approximation 𝑓<sub>M,m,N</sub>(x) = Σ<sub>k=1</sub><sup>N</sup>α<sub>k</sub>Φ<sub>M,k</sub>(x) to a periodic function 𝑓(x) is determined by requiring < Φ<sub>m,j</sub>, 𝑓 - 𝑓<sub>M,m,N</sub> > = 0 for j = 1,...,N, where the Φ<sub>L,k</sub>'s are the unique periodic spline basis functions of order 𝐿. Error estimates, examples and some relationships to wavelets are given for the case M - m = 2μ. The case M - m = 2µ + 1 is briefly discussed but not completely explored.en
dc.description.degreePh. D.en
dc.format.extentviii, 112 leavesen
dc.format.mediumBTDen
dc.format.mimetypeapplication/pdfen
dc.identifier.otheretd-03022006-093404en
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-03022006-093404/en
dc.identifier.urihttp://hdl.handle.net/10919/37448en
dc.language.isoenen
dc.publisherVirginia Techen
dc.relation.haspartLD5655.V856_1994.B663.pdfen
dc.relation.isformatofOCLC# 30932840en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.lccLD5655.V856 1994.B663en
dc.subject.lcshPeriodic functionsen
dc.subject.lcshSpline theoryen
dc.titleA duality approach to spline approximationen
dc.typeDissertationen
dc.type.dcmitypeTexten
thesis.degree.disciplineMathematicsen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.leveldoctoralen
thesis.degree.namePh. D.en

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
LD5655.V856_1994.B663.pdf
Size:
2.33 MB
Format:
Adobe Portable Document Format
Description: