Analytical Methods of Testing Solid Waste and Leachate to Determine Landfill Stability and Landfill Biodegradation Enhancement

dc.contributor.authorBricker, Garrett Demyanen
dc.contributor.committeechairNovak, John T.en
dc.contributor.committeememberRandall, Clifford W.en
dc.contributor.committeememberGoldsmith, C. Douglas Jr.en
dc.contributor.departmentEnvironmental Sciences and Engineeringen
dc.date.accessioned2014-03-14T20:45:50Zen
dc.date.adate2009-10-21en
dc.date.available2014-03-14T20:45:50Zen
dc.date.issued2009-09-10en
dc.date.rdate2009-10-21en
dc.date.sdate2009-09-23en
dc.description.abstractThis was a study undertaken to investigate municipal solid waste (MSW) landfill stability parameters and landfill leachate properties to determine how solid waste and leachate characteristics can be used to describe stability. The primary objective was to determine if leachate properties could be used to determine stability of the overlying refuse. All landfills studied were engineered landfill bioreactors giving insight to how leachate recirculation affects stability. This study investigated the correlation between cellulose, lignin, volatile solids, and biochemical methane production (BMP). These parameters can been used to characterize landfill stability. The BMP tests indicate that a saturated waste can produce methane. Cellulose is an indicator of landfill stability. Wastes high in cellulose content were found to have high BMP. Paper samples studied indicated gas production from high-cellulose paper was higher compared to low-cellulose samples. Lignin has been found to correlate fairly well with BMP. Increasing cellulose to lignin ratios correlate well with increasing BMP levels, further supporting the use of the BMP test to indicate solid waste stability. In the BMP test for leachate, a mixture of the standard growth medium (less 80% distilled water) and 80% v/v leachate incubated for 15 days produced the most consistent BMP results. Leachate cellulose and BMP correlated well. The chemical oxygen demand (COD) and biochemical oxygen demand (BOD) also had some correlation to BMP tests. Leachate COD was found to decrease over time in landfill bioreactors. The use of leachate rather than MSW to determine stability would be more efficient.en
dc.description.degreeMaster of Scienceen
dc.identifier.otheretd-09232009-220242en
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-09232009-220242/en
dc.identifier.urihttp://hdl.handle.net/10919/35162en
dc.publisherVirginia Techen
dc.relation.haspartGarrett_Demyan_Bricker_Masters_Thesis_101209.pdfen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectStabilityen
dc.subjectLandfillen
dc.subjectMethaneen
dc.subjectBioreactoren
dc.subjectLeachateen
dc.titleAnalytical Methods of Testing Solid Waste and Leachate to Determine Landfill Stability and Landfill Biodegradation Enhancementen
dc.typeThesisen
thesis.degree.disciplineEnvironmental Sciences and Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Garrett_Demyan_Bricker_Masters_Thesis_101209.pdf
Size:
1.33 MB
Format:
Adobe Portable Document Format

Collections