Thermal Analysis of the Detector in the Radiation Budget Instrument (RBI)
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Earth radiation budget instruments are devices designed to study global climate change. These instruments use telescopes embarked on low-earth-orbit satellites to measure Earth emitted and reflected solar radiation. Radiation is sensed as temperature changes caused by radiation absorbed during scans of the earth on a delicate gold-black coated detector. This work is part of a larger effort to develop an end-to-end dynamic electro-thermal model, based on first-principles, for the next generation of earth radiation budget instruments, the Radiation Budget Instrument (RBI). A primary objective of this effort is to develop a numerical model of the detector to be used on RBI. Specifically, the sensor model converts radiation arriving at the detector, collimated and focused through telescopes, into sensible heat; thereby producing a voltage. A mathematical model characterizing this sensor is developed. Using a MATLAB algorithm, an implicit finite-volume scheme is implemented to determine the model solution. Model parameters are tuned to replicate experimental data using a robust parameter estimation scheme. With these model parameters defined, the electro-thermal sensor model can be used, in conjunction with the remaining components of the end-to-end model, to provide insight for future interpretation of data produced by the RBI.