Anaerobic Co-Digestion of High Strength Food Waste with Municipal Sewage Sludge: An assessment of Digester Performance and gas production

Files

TR Number

Date

2014-06-06

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Anaerobic digestion is perhaps the simplest and most widely accepted method for solids and residuals management in the field of wastewater treatment. An emerging trend with regard to anaerobic digestion is the addition of additional organic or industrial wastes rich in degradable material (COD) that can lead to increased methane production and reduce the energy demand of the facility.

The objective of this research was to evaluate the effect of adding significant quantities (>20% of feed volume) of High Strength Food Wastes (HSW) to digesters treating conventional municipal sludge by monitoring key parameters such as pH, influent and effluent solids, ammonia, Volatile Fatty Acids (VFAs) and alkalinity. Daily gas production was also closely monitored. Four digesters were set up and exposed to different food waste loading rates. A comparison was drawn between the performance of these reactors, one of which was fed only with sewage sludge and served as the control. If the bacteria in the system are able to metabolize this additional COD, it should show up as an increase in gas production with little or no increase in effluent COD.

Ammonia is another crucial parameter that needs to be closely watched as it can have an inhibitory effect on methane production. As part of this study, the impact of addition of free ammonium (simulating high ammonium concentration in the feed sludge or food waste) on digester performance was assessed. The digesters were closely monitored for signs of poor performance or failure.

Description

Keywords

Anaerobic digestion, High-Strength Waste (HSW), Food Waste, organic loading, failure, gas production

Citation

Collections