Exact results for the Kardar-Parisi-Zhang equation with spatially correlated noise
dc.contributor.author | Janssen, H. K. | en |
dc.contributor.author | Täuber, Uwe C. | en |
dc.contributor.author | Frey, E. | en |
dc.contributor.department | Physics | en |
dc.date.accessioned | 2016-09-29T23:49:52Z | en |
dc.date.available | 2016-09-29T23:49:52Z | en |
dc.date.issued | 1999-06-01 | en |
dc.description.abstract | We investigate the Kardar–Parisi–Zhang (KPZ) equation in d spatial dimensions with Gaussian spatially long–range correlated noise — characterized by its second moment R(x− x′) ∝ |x−x ′|<sup>2ρ−d</sup> — by means of dynamic field theory and the renormalization group. Using a stochastic Cole–Hopf transformation we derive exact exponents and scaling functions for the roughening transition and the smooth phase above the lower critical dimension d<sub>c</sub> = 2(1 + ρ). Below the lower critical dimension, there is a line ρ<sub>∗</sub>(d) marking the stability boundary between the short-range and long-range noise fixed points. For ρ ≥ ρ<sub>∗</sub>(d), the general structure of the renormalization-group equations fixes the values of the dynamic and roughness exponents exactly, whereas above ρ<sub>∗</sub>(d), one has to rely on some perturbational techniques. We discuss the location of this stability boundary ρ<sub>∗</sub>(d) in light of the exact results derived in this paper, and from results known in the literature. In particular, we conjecture that there might be two qualitatively different strong-coupling phases above and below the lower critical dimension, respectively. | en |
dc.description.version | Published version | en |
dc.format.extent | 491 - 511 (21) page(s) | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.1007/s100510050790 | en |
dc.identifier.issn | 1434-6028 | en |
dc.identifier.issue | 3 | en |
dc.identifier.uri | http://hdl.handle.net/10919/73069 | en |
dc.identifier.volume | 9 | en |
dc.language.iso | en | en |
dc.publisher | Springer | en |
dc.relation.uri | http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000081243800012&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=930d57c9ac61a043676db62af60056c1 | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | Physics, Condensed Matter | en |
dc.subject | Physics | en |
dc.subject | RENORMALIZATION-GROUP ANALYSIS | en |
dc.subject | STOCHASTIC BURGERS-EQUATION | en |
dc.subject | UPPER CRITICAL DIMENSION | en |
dc.subject | LONG-RANGE INTERACTIONS | en |
dc.subject | DIRECTED POLYMERS | en |
dc.subject | INTERFACE GROWTH | en |
dc.subject | RANDOM-MEDIA | en |
dc.subject | CRITICAL EXPONENTS | en |
dc.subject | SURFACE GROWTH | en |
dc.subject | FIELD-THEORY | en |
dc.title | Exact results for the Kardar-Parisi-Zhang equation with spatially correlated noise | en |
dc.title.serial | European Physical Journal B | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
pubs.organisational-group | /Virginia Tech | en |
pubs.organisational-group | /Virginia Tech/All T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Science | en |
pubs.organisational-group | /Virginia Tech/Science/COS T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Science/Physics | en |