Machine Learning Approaches to Data-Driven Transition Modeling

TR Number
Date
2023-06-15
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

Laminar-turbulent transition has a strong impact on aerodynamic performance in many practical applications. Hence, there is a practical need for developing reliable and efficient transition prediction models, which form a critical element of the CFD process for aerospace vehicles across multiple flow regimes. This dissertation explores machine learning approaches to develop transition models using data from computations based on linear stability theory. Such data provide strong correlation with the underlying physics governed by linearized disturbance equations. In the proposed transition model, a convolutional neural network-based model encodes information from boundary layer profiles into integral quantities. Such automated feature extraction capability enables generalization of the proposed model to multiple instability mechanisms, even for those where physically defined shape factor parameters cannot be defined/determined in a consistent manner. Furthermore, sequence-to-sequence mapping is used to predict the transition location based on the mean boundary layer profiles. Such an end-to-end transition model provides a significantly simplified workflow. Although the proposed model has been analyzed for two-dimensional boundary layer flows, the embedded feature extraction capability enables their generalization to other flows as well. Neural network-based nonlinear functional approximation has also been presented in the context of transport equation-based closure models. Such models have been examined for their computational complexity and invariance properties based on the transport equation of a general scalar quantity. The data-driven approaches explored here demonstrate the potential for improved transition prediction models.

Description
Keywords
Laminar--Turbulent Transition, Machine learning, Convolutional Neural Network, Recurrent Neural Network, Neural Operators
Citation