VTechWorks staff will be away for the Thanksgiving holiday beginning at noon on Wednesday, November 27, through Friday, November 29. We will resume normal operations on Monday, December 2. Thank you for your patience.
 

Safety of Flight Prediction for Small Unmanned Aerial Vehicles Using Dynamic Bayesian Networks

TR Number

Date

2018-05-23

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

This thesis compares three variations of the Bayesian network as an aid for decision-making using uncertain information. After reviewing the basic theory underlying probabilistic graphical models and Bayesian estimation, the thesis presents a user-defined static Bayesian network, a static Bayesian network in which the parameter values are learned from data, and a dynamic Bayesian network with learning. As a basis for the comparison, these models are used to provide a prior assessment of the safety of flight of a small unmanned aircraft, taking into consideration the state of the aircraft and weather. The results of the analysis indicate that the dynamic Bayesian network is more effective than the static networks at predicting safety of flight.

Description

Keywords

Dynamic Bayesian Network, Unmanned Aerial Systems, Risk

Citation

Collections