Sensor Networks: Studies on the Variance of Estimation, Improving Event/Anomaly Detection, and Sensor Reduction Techniques Using Probabilistic Models

dc.contributor.authorChin, Philip Allenen
dc.contributor.committeechairRoach, John W.en
dc.contributor.committeememberPapenfuss, Cory M.en
dc.contributor.committeememberLeonessa, Alexanderen
dc.contributor.departmentMechanical Engineeringen
dc.date.accessioned2014-03-14T20:40:13Zen
dc.date.adate2012-07-19en
dc.date.available2014-03-14T20:40:13Zen
dc.date.issued2012-06-15en
dc.date.rdate2012-07-19en
dc.date.sdate2012-06-18en
dc.description.abstractSensor network performance is governed by the physical placement of sensors and their geometric relationship to the events they measure. To illustrate this, the entirety of this thesis covers the following interconnected subjects: 1) graphical analysis of the variance of the estimation error caused by physical characteristics of an acoustic target source and its geometric location relative to sensor arrays, 2) event/anomaly detection method for time aggregated point sensor data using a parametric Poisson distribution data model, 3) a sensor reduction or placement technique using Bellman optimal estimates of target agent dynamics and probabilistic training data (Goode, Chin, & Roan, 2011), and 4) transforming event monitoring point sensor data into event detection and classification of the direction of travel using a contextual, joint probability, causal relationship, sliding window, and geospatial intelligence (GEOINT) method.en
dc.description.degreeMaster of Scienceen
dc.identifier.otheretd-06182012-134108en
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-06182012-134108/en
dc.identifier.urihttp://hdl.handle.net/10919/33645en
dc.publisherVirginia Techen
dc.relation.haspartChin_PA_T_2012.pdfen
dc.relation.haspartChin_PA_T_2012_Copyright.pdfen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectCramer-Rao boundsen
dc.subjectdistributed sensor networken
dc.subjectsource localizationen
dc.subjectdirection of arrivalen
dc.subjectsensor reductionen
dc.subjectevent monitoringen
dc.subjectevent detectionen
dc.subjectdirection of travelen
dc.subjectjoint probabilityen
dc.subjectgeospatial intelligenceen
dc.subjectclassifieren
dc.subjectcorrelationen
dc.subjectanomaly detectionen
dc.titleSensor Networks: Studies on the Variance of Estimation, Improving Event/Anomaly Detection, and Sensor Reduction Techniques Using Probabilistic Modelsen
dc.typeThesisen
thesis.degree.disciplineMechanical Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Chin_PA_T_2012.pdf
Size:
4.06 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Chin_PA_T_2012_Copyright.pdf
Size:
215.93 KB
Format:
Adobe Portable Document Format

Collections