Chaotic Rayleigh-Benard convection with finite sidewalls
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
We explore the role of finite sidewalls on chaotic Rayleigh-Bénard convection. We use large-scale parallel spectral-element numerical simulations for the precise conditions of experiment for cylindrical convection domains. We solve the Boussinesq equations for thermal convection and the conjugate heat transfer problem for the energy transfer at the solid sidewalls of the cylindrical domain. The solid sidewall of the convection domain has finite values of thickness, thermal conductivity, and thermal diffusivity. We compute the Lyapunov vectors and exponents for the entire fluid-solid coupled problem. We quantify the chaotic dynamics of convection over a range of thermal sidewall boundary conditions. We find that the dynamics become less chaotic as the thermal conductivity of the sidewalls increases as measured by the value of the fractal dimension of the dynamics. The thermal conductivity of the sidewall is a stabilizing influence; the heat transfer between the fluid and solid regions is always in the direction to reduce the fluid motion near the sidewalls. Although the heat interaction for strongly conducting sidewalls is only about 1% of the heat transfer through the fluid layer, it is sufficient to reduce the fractal dimension of the dynamics by approximately 25% in our computations.