Felted Objects via Robotic Additive Manufacturing

TR Number

Date

2021-04-30

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

In this thesis, we develop a new method for Additive Manufacturing of felt to make three dimensional objects. Felting is a method of intertwining fibers to make a piece of textile. In this work, a 6 DOF UR-5 robotic arm equipped with a 3 DOF tool head to test various approaches to using felting. Due to the novelty of this approach several different control architectures and methodologies are presented. We created felted test samples using a range of processing conditions, and tested them in an Instron machine. Samples were tested parallel to the roving fiber direction and perpendicular to the roving fiber direction. Additionally, two pieces of felt were attached to each other with needling, and these were tested with T-peel tests, pulling both in the direction of the roving fibers and perpendicular to the fibers. We present results for the Young's Modulus and Ultimate Strength of each of these samples. It is anticipated that given the appropriate combination of materials and robotic tooling, this method could be used to make parts for a multitude of applications ranging from custom footwear to advanced composites.

Description

Keywords

Felting, Robot, Additive manufacturing, Needle Felting, Robotic Manufacturing

Citation

Collections