Random walks with imperfect trapping in the decoupled-ring approximation

Files

TR Number

Date

2002-08-01

Journal Title

Journal ISSN

Volume Title

Publisher

Springer-Verlag

Abstract

We investigate random walks on a lattice with imperfect traps. In one dimension, we perturbatively compute the survival probability by reducing the problem to a particle diffusing on a closed ring containing just one single trap. Numerical simulations reveal this solution, which is exact in the limit of perfect traps, to be remarkably robust with respect to a significant lowering of the trapping probability. We demonstrate that for randomly distributed traps, the long-time asymptotics of our result recovers the known stretched exponential decay. We also study an anisotropic three-dimensional version of our model, where for sufficiently large transverse diffusion the system is described by the mean-field kinetics. We discuss possible applications of some of our findings to the decay of excitons in semiconducting organic polymer materials, and emphasize the crucial influence of the spatial trap distribution on the kinetics.

Description

Keywords

Physics, Condensed Matter, Physics, CONJUGATED POLYMERS, DIFFUSION, DISSOCIATION, DIMENSIONS, MEDIA, SITES

Citation