Applications of field-theoretic renormalization group methods to reaction-diffusion problems

dc.contributor.authorTäuber, Uwe C.en
dc.contributor.authorHoward, M.en
dc.contributor.authorVollmayr-Lee, B. P.en
dc.contributor.departmentPhysicsen
dc.date.accessioned2016-09-30T13:11:08Zen
dc.date.available2016-09-30T13:11:08Zen
dc.date.issued2005-04-29en
dc.description.abstractWe review the application of field-theoretic renormalization group (RG) methods to the study of fluctuations in reaction-diffusion problems. We first investigate the physical origin of universality in these systems, before comparing RG methods to other available analytic techniques, including exact solutions and Smoluchowski-type approximations. Starting from the microscopic reaction-diffusion master equation, we then pedagogically detail the mapping to a field theory for the single-species reaction kA → ℓA (ℓ < k). We employ this particularly simple but non-trivial system to introduce the field-theoretic RG tools, including the diagrammatic perturbation expansion, renormalization, and Callan–Symanzik RG flow equation. We demonstrate how these techniques permit the calculation of universal quantities such as density decay exponents and amplitudes via perturbative ϵ = d<sub>c</sub> − d expansions with respect to the upper critical dimension d<sub>c</sub>. With these basics established, we then provide an overview of more sophisticated applications to multiple species reactions, disorder effects, Levy flights, persistence problems, and the influence of spatial boundaries. We also analyze field-theoretic approaches to nonequilibrium phase transitions separating active from absorbing states. We focus particularly on the generic directed percolation universality class, as well as on the most prominent exception to this class: evenoffspring branching and annihilating random walks. Finally, we summarize the state of the field and present our perspective on outstanding problems for the future.en
dc.description.versionPublished versionen
dc.format.extentR79 - R131 (53) page(s)en
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1088/0305-4470/38/17/R01en
dc.identifier.issn0305-4470en
dc.identifier.issue17en
dc.identifier.urihttp://hdl.handle.net/10919/73114en
dc.identifier.volume38en
dc.language.isoenen
dc.publisherIOPen
dc.relation.urihttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000229329500004&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=930d57c9ac61a043676db62af60056c1en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectPhysics, Multidisciplinaryen
dc.subjectPhysics, Mathematicalen
dc.subjectPhysicsen
dc.subjectDIRECTED PERCOLATION PROCESSESen
dc.subjectANNIHILATING RANDOM-WALKSen
dc.subjectNONEQUILIBRIUM PHASE-TRANSITIONSen
dc.subjectINDUCED ANOMALOUS KINETICSen
dc.subjectEXACTLY SOLVABLE MODELSen
dc.subjectBIRTH-DEATH PROCESSESen
dc.subjectHARD-CORE PARTICLESen
dc.subjectLIMITED REACTIONSen
dc.subjectCRITICAL-BEHAVIORen
dc.subjectONE-DIMENSIONen
dc.titleApplications of field-theoretic renormalization group methods to reaction-diffusion problemsen
dc.title.serialJournal of Physics A-Mathematical And Generalen
dc.typeArticle - Refereeden
dc.typeReviewen
dc.type.dcmitypeTexten
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Scienceen
pubs.organisational-group/Virginia Tech/Science/COS T&R Facultyen
pubs.organisational-group/Virginia Tech/Science/Physicsen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
0501678v2.pdf
Size:
724.61 KB
Format:
Adobe Portable Document Format
Description:
Accepted Version
License bundle
Now showing 1 - 1 of 1
Name:
VTUL_Distribution_License_2016_05_09.pdf
Size:
18.09 KB
Format:
Adobe Portable Document Format
Description: