Physics-Informed, Data-Driven Framework for Model-Form Uncertainty Estimation and Reduction in RANS Simulations
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Computational fluid dynamics (CFD) has been widely used to simulate turbulent flows. Although an increased availability of computational resources has enabled high-fidelity simulations (e.g. large eddy simulation and direct numerical simulation) of turbulent flows, the Reynolds-Averaged Navier-Stokes (RANS) equations based models are still the dominant tools for industrial applications. However, the predictive capability of RANS models is limited by potential inaccuracies driven by hypotheses in the Reynolds stress closure. With the ever-increasing use of RANS simulations in mission-critical applications, the estimation and reduction of model-form uncertainties in RANS models have attracted attention in the turbulence modeling community. In this work, I focus on estimating uncertainties stemming from the RANS turbulence closure and calibrating discrepancies in the modeled Reynolds stresses to improve the predictive capability of RANS models. Both on-line and off-line data are utilized to achieve this goal. The main contributions of this dissertation can be summarized as follows: First, a physics-based, data-driven Bayesian framework is developed for estimating and reducing model-form uncertainties in RANS simulations. An iterative ensemble Kalman method is employed to assimilate sparse on-line measurement data and empirical prior knowledge for a full-field inversion. The merits of incorporating prior knowledge and physical constraints in calibrating RANS model discrepancies are demonstrated and discussed. Second, a random matrix theoretic framework is proposed for estimating model-form uncertainties in RANS simulations. Maximum entropy principle is employed to identify the probability distribution that satisfies given constraints but without introducing artificial information. Objective prior perturbations of RANS-predicted Reynolds stresses in physical projections are provided based on comparisons between physics-based and random matrix theoretic approaches. Finally, a physics-informed, machine learning framework towards predictive RANS turbulence modeling is proposed. The functional forms of model discrepancies with respect to mean flow features are extracted from the off-line database of closely related flows based on machine learning algorithms. The RANS-modeled Reynolds stresses of prediction flows can be significantly improved by the trained discrepancy function, which is an important step towards the predictive turbulence modeling.