Extraction of Structural Component Geometries in Point Clouds of Metal Buildings

TR Number

Date

2021-01-28

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Digital models are essential to quantifying the behavior of structural systems. In many cases, the creation of these models involves manual measurements taken in the field, followed by a manual creation of this model using these measurements. Both of these steps are time consuming and prohibitively expensive, leading to a lack of utilization of accurate models. We propose a framework built on the processing of 3D laser scanning data to partially automate the creation of these models. We focus on steel structures, as they represent a gap in current research into this field. Previous research has focused on segmentation of the point cloud data in order to extract relevant geometries. These approaches cannot easily be extended to steel structures, so we propose a novel method of processing this data with the goal of creating a full finite element model from the information extracted. Our approach sidesteps the need for segmentation by directly extracting the centerlines of structural elements. We begin by taking "slices" of the point cloud in the three principal directions. Each of these slices is flattened into an image, which allows us to take advantage of powerful image processing techniques. Within these images we use 2d convolution as a template match to isolate structural cross sections. This gives us the centroids of cross sections in the image space, which we can map back to the point cloud space as points along the centerline of the element. By fitting lines in 3d space to these points, we can determine the equations for the centerline of each element. This information could be easily passed into a finite element modeling software where the cross sections are manually defined for each line element.

Description

Keywords

3D Laser Scanning, Lidar, 3D Point Cloud, As-built modeling, Finite Element Modeling, Operational Modal Analysis

Citation

Collections