Upper Extremity Interaction with a Helicopter Side Airbag: Injury Criteria for Dynamic Hyperextension of the Female Elbow Joint

dc.contributor.authorHansen, Gail Annen
dc.contributor.committeechairDuma, Stefan M.en
dc.contributor.committeememberStitzel, Joel D.en
dc.contributor.committeememberMadigan, Michael L.en
dc.contributor.departmentMechanical Engineeringen
dc.date.accessioned2014-03-14T21:35:39Zen
dc.date.adate2004-05-11en
dc.date.available2014-03-14T21:35:39Zen
dc.date.issued2004-04-22en
dc.date.rdate2006-05-11en
dc.date.sdate2004-05-05en
dc.description.abstractThis paper describes a three part analysis to characterize the interaction between the female upper extremity and a helicopter cockpit side airbag system and to develop dynamic hyperextension injury criteria for the female elbow joint. Part I involved a series of 10 experiments with an original Army Black Hawk helicopter side airbag. A 5th percentile female Hybrid III instrumented upper extremity was used to demonstrate side airbag upper extremity loading. Two out of the 10 tests resulted in high elbow bending moments of 128 Nm and 144 Nm. Part II included dynamic hyperextension tests on 24 female cadaver elbow joints. The energy source was a drop tower utilizing a three-point bending configuration to apply elbow bending moments matching the previously conducted side airbag tests. Post-test necropsy showed that 16 of the 24 elbow joint tests resulted in injuries. Injury severity ranged from minor cartilage damage to more severe joint dislocations and transverse fractures of the distal humerus. Peak elbow bending moments ranged from 42.4 Nm to 146.3 Nm. Peak bending moment proved to be a significant indicator of any elbow injury (p=0.02) as well as elbow joint dislocation (p=0.01). Logistic regression analyses were used to develop single and multivariate injury risk functions. Using peak moment data for the entire test population, a 50% risk of obtaining any elbow injury was found at 56 Nm while a 50% risk of sustaining an elbow joint dislocation was found at 93 Nm for the female population. These results indicate that the peak elbow bending moments achieved in Part I are associated with a greater than 90% risk for elbow injury. Subsequently, the airbag was re-designed in an effort to mitigate this as well as the other upper extremity injury risks. Part III assessed the enhanced side airbag module to ensure injury risks had been reduced prior to implementing the new system. To facilitate this, 12 enhanced side airbag deployments were conducted using the same procedures as Part I. Results indicate that the re-designed side airbag has effectively mitigated elbow injury risks induced by the original side airbag design. It is anticipated that this study will provide researchers with additional injury criteria for assessing upper extremity injury risk caused by both military and automotive side airbag deployments.en
dc.description.degreeMaster of Scienceen
dc.identifier.otheretd-05052004-112502en
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-05052004-112502/en
dc.identifier.urihttp://hdl.handle.net/10919/42499en
dc.language.isoenen
dc.publisherVirginia Techen
dc.relation.haspartHansenMastersThesis.pdfen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectHyperextensionen
dc.subjectElbowen
dc.subjectUpper Extremityen
dc.subjectSide Airbagen
dc.subjectInjuryen
dc.titleUpper Extremity Interaction with a Helicopter Side Airbag: Injury Criteria for Dynamic Hyperextension of the Female Elbow Jointen
dc.typeThesisen
thesis.degree.disciplineMechanical Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
HansenMastersThesis.pdf
Size:
5.11 MB
Format:
Adobe Portable Document Format

Collections