Involutory matrices, modulo m
dc.contributor.author | Amey, Dorothy Mae | en |
dc.contributor.department | Mathematics | en |
dc.date.accessioned | 2016-05-23T14:57:10Z | en |
dc.date.available | 2016-05-23T14:57:10Z | en |
dc.date.issued | 1969 | en |
dc.description.abstract | Given the prime power factorization of a positive integer m, a method for calculating the number of all distinct n x n - involutory matrices (mod m) is derived. This is done by first developing a method for the construction and enumeration of involutory matrices (mod P<sup>α</sup>), without duplication, for each prime power modulus P<sup>α</sup>. Using these results, formulas for the number of distinct involutory matrices (mod P<sup>α</sup>) of order n are given where p is an odd prime, p=2, α= 1 and α > 1. The concept of a fixed group associated with an involutory matrix (mod P<sup>α</sup>) is used to characterize such matrices. Involutory matrices (mod P<sup>α</sup>) of order n are considered as linear transformations on a vector space of n-tuples to provide uncomplicated proofs for the basic results concerning involutory matrices over a finite field. | en |
dc.description.degree | Master of Science | en |
dc.format.extent | iii, 51 leaves. | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.uri | http://hdl.handle.net/10919/71017 | en |
dc.language.iso | en_US | en |
dc.publisher | Virginia Polytechnic Institute | en |
dc.relation.isformatof | OCLC# 20273060 | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject.lcc | LD5655.V855 1969.A45 | en |
dc.subject.lcsh | Matrices | en |
dc.title | Involutory matrices, modulo m | en |
dc.type | Thesis | en |
dc.type.dcmitype | Text | en |
thesis.degree.discipline | Mathematics | en |
thesis.degree.grantor | Virginia Polytechnic Institute | en |
thesis.degree.level | masters | en |
thesis.degree.name | Master of Science | en |
Files
Original bundle
1 - 1 of 1