SNAP Biclustering

TR Number



Journal Title

Journal ISSN

Volume Title


Virginia Tech


This thesis presents a new ant-optimized biclustering technique known as SNAP biclustering, which runs faster and produces results of superior quality to previous techniques. Biclustering techniques have been designed to compensate for the weaknesses of classical clustering algorithms by allowing cluster overlap, and allowing vectors to be grouped for a subset of their defined features. These techniques have performed well in many problem domains, particularly DNA microarray analysis and collaborative filtering. A motivation for this work has been the biclustering technique known as bicACO, which was the first to use ant colony optimization. As bicACO is time intensive, much emphasis was placed on decreasing SNAP's runtime. The superior speed and biclustering results of SNAP are due to its improved initialization and solution construction procedures. In experimental studies involving the Yeast Cell Cycle DNA microarray dataset and the MovieLens collaborative filtering dataset, SNAP has run at least 22 times faster than bicACO while generating superior results. Thus, SNAP is an effective choice of technique for microarray analysis and collaborative filtering applications.



Single Nucleotide Polymorphisms, Collaborative Filtering, Microarray Analysis, Ant Colony Optimization, Biclustering