Effects of high incubation temperature on the developing small intestine and yolk sac of broiler chicks with insight into goblet cell development in the small intestine early posthatch

TR Number



Journal Title

Journal ISSN

Volume Title


Virginia Tech


The incubation period is crucial for development and overall quality of a chick. The selection for fast growing broilers has allowed the birds to reach market weight at a faster rate making the incubation period a larger portion of a broiler's life. A faster growth rate can lead to the release of more metabolic heat inside of the egg toward the second half of incubation because the embryo shifts to a homeothermic state. More heat being released into the incubator can cause the incubation temperature to rise if the incubator is not electronically regulated or cannot be ventilated properly due to malfunction. A high incubation temperature can impact the hatchability, growth, and development of the chick. This thesis provides a more in-depth analysis of the effects of high incubation temperature (37.5°C versus 39.5°C) on the developing small intestine and yolk sac, which provide the chick with nutrients posthatch and during embryogenesis. Studying these organs and mechanisms occurring during this time could potentially indicate why chicks from eggs subjected to a higher incubation temperature are not developing and growing properly. Chicks from eggs incubated at a higher temperature had lower body weights, lower hatchability and lower villus height in the duodenum, jejunum, and ileum. There were also differences seen in the depth of the crypt, which is the site for stem cells. Chicks from eggs incubated at a higher temperature had a lower crypt depth in the duodenum and jejunum. There was no difference in the expression of the intestinal stem cell marker olfactomedin 4 (Olfm4) and mucin 2, which is secreted by goblet cells and forms mucus. In the yolk sac, heat shock proteins (HSP) 70 and 90 were elevated at embryonic day 15, and HSP90 still remained elevated at embryonic day 17. Chicks from eggs incubated at a higher temperature showed greater expression of peptide transporter 1 and avian beta-defensin 10 mRNA at embryonic day 13. Even though small intestinal morphology was impacted early posthatch and expression of genes in the yolk sac were elevated at embryonic day 13, there does not seem to be a long-lasting effect on the development of the small intestine or the yolk sac. It is still important to study the impact of the incubation environment to understand the development and growth of the chicks and how different incubation factors can impact the overall hatchability and health of the chick.



Incubation temperature, Broiler, Small Intestine, Yolk sac, Stem cells, Goblet cells, In situ hybridization, qPCR