Investigation of the Herschel-Quincke tube concept in a rectangular lined duct


TR Number



Journal Title

Journal ISSN

Volume Title


Virginia Tech


In this research an innovative combination of the Herschel-Quincke tubes and traditional liners is proposed for application in noise reduction of aircraft engines. The approach consists of installing Herschel-Quincke (HQ) tubes on lined rectangular ducts. An analytical model was developed to predict the effects of HQ tubes applied to rectangular lined ducts. The technique involves assuming the tube-duct interfaces as finite piston sources. These sources couple the acoustic field inside the duct with the acoustic field within the HQ tubes. The accuracy of the analytical model was validated with experimental data. Three different types of experimental configurations were tested: liner only, HQ tube with a hard wall duct, and HQ tubes with liners. Analytical predictions were shown to correlate well with the experimental data. Two typical types of liners, perforate and linear, were tested in these investigations. The perforate and linear liners with HQ systems showed better sound attenuations than the HQ tubes with hard walled ducts and liners only systems. The performance of the perforate and linear liners with HQ tubes were investigated in various configurations. The results indicated possible combinations which show great potential for reducing the noise within the ducts.



Herschel-Quincke, higher-order modes, aeroacoustics, liner